Symmetric positive solutions to a second-order boundary value problem with integral boundary conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Positive Solutions of a Nonlinear Second-order Boundary-value Problem with Integral Boundary Conditions

In this article we prove the existence of at least one positive solution for a three-point integral boundary-value problem for a second-order nonlinear differential equation. The existence result is obtained by using Schauder’s fixed point theorem. Therefore, we do not need local assumptions such as superlinearity or sublinearity of the involved nonlinear functions.

متن کامل

Multiple positive solutions for a second-order boundary value problem with integral boundary conditions

where α and β are nonnegative constants. Boundary value problems of ordinary differential equations arise in kinds of different areas of applied mathematics and physics. Many authors have studied two-point, threepoint, multi-point boundary value problems for second-order differential equations extensively, see [–] and the references therein. In recent years, boundary value problems with integ...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Positive Solutions to a Singular Second Order Boundary Value Problem

In this paper, we establish some criteria for the existence of positive solutions for certain two point boundary value problems for the singular nonlinear second order equation −(ru ) + qu = λf (t, u ) on a time scale T. As a special case when T = R, our results include those of Erbe and Mathsen [11]. Our results are new in a general time scale setting and can be applied to difference and q-dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2013

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2013-150